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ABSTRACT 17 
The suitability of an empirical multivariate AR1 model as a benchmark for the skill of 18 

decadal surface temperature forecasts is demonstrated. Constructed from the observed 19 

simultaneous and one-year lag correlation statistics of 12-month running mean sea 20 

surface temperature (SST) and surface (2m) land temperature global anomalies for the 21 

years 1900-2008, the empirical model hindcasts have skill for leads 2-5 and 6-9 years 22 

comparable to and sometimes even better than the CMIP5 model hindcasts initialized 23 

annually over the period 1960-2000, and are much more skillful than damped persistence 24 

(e.g., a local univariate AR1 process). The pronounced similarity in geographical 25 

variations of skill between the empirical model and CMIP5 hindcasts suggests similarity 26 

in their sources of skill as well, supporting additional evaluation of the empirical model’s 27 

skill and predictability over the entire record. It is shown that for forecast leads greater 28 

than about a year, the empirical model skill is almost entirely due to patterns 29 

corresponding to the secular trend and to two global patterns that each have about ten 30 

year decorrelation time scales. In the Atlantic, all three patterns contribute to forecast 31 

skill of the Atlantic Multidecadal Oscillation (AMO) index. In the Pacific, only one 32 

pattern contributes to the relatively modest long-lead forecast skill of the Pacific Decadal 33 

Oscillation (PDO) index, consistent with earlier findings that found an independent 34 

decadal signal in the PDO as a residual after both interannual and decadal ENSO 35 

influences were first removed. These results suggest that multivariate red noise rather 36 

than univariate red noise is the most appropriate baseline comparison for coupled model 37 

decadal forecasts. 38 
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1. Introduction 39 

The decadal prediction problem has been in an embryonic stage for decades. To progress, 40 

we could simply apply the climate community’s long experience in understanding 41 

seasonal-to-interannual variability and improving its prediction to the decadal variability 42 

and prediction problem. For example, a wide array of both physical and empirical 43 

methods has been used to make ENSO forecasts (e.g., review by Latif et al. 1998). 44 

Statistical forecasts can complement those from physical models, as they are relatively 45 

easy and economical to perform, and can be as skillful as physical models for some 46 

applications, including ENSO-related forecasts.  47 

It seems reasonable then that a similar two-pronged approach of physical and 48 

empirical methods could advance decadal prediction. This is not to say that this 49 

improvement will or can occur as readily as was done for seasonal forecasts. One concern 50 

is that, while on interannual time scales ENSO provides a very well defined phenomeon 51 

that may be understood as the result of a defined mechanism (e.g. delayed oscillator 52 

theory, recharge-discharge mechanism), there does not appear to be so clearly a defined 53 

decadal “phenomenon”, at least in the Pacific. Large scale patterns such as the Pacific 54 

decadal oscillation (PDO; Mantua et al. 1997) do not dominate decadal variability to the 55 

same degree as ENSO dominates interannual variability, and moreover may represent the 56 

superposition and/or convolution of a few mechanisms (e.g., Schneider and Cornuelle 57 

2005; Newman 2007) rather than the result of one identifiable physical process. If most 58 

decadal variability represents the low-frequency or reddened tail of interannual 59 

phenomena (e.g., Newman et al 2003b; Vimont 2005) rather than truly “decadal” 60 

phenomena, then decadal forecasts will likely have very limited predictability. The 61 
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effects of anthropogenic climate change complicate comparison between models and 62 

observations, and how to distinguish natural decadal variability from anthropogenically-63 

forced decadal variation is a fundamental problem (Solomon et al. 2011). 64 

Currently a number of modeling centers have carried out a series of decadal 65 

“hindcasts” as part of the CMIP5 effort (Taylor et al. 2012). It is an important long-range 66 

goal of climate diagnosis to provide insights that will help improve decadal forecasts 67 

from these CGCMs. Here, we explore the utility of diagnosing annual to decadal 68 

variability and predictability in an empirically determined model of the observed system.  69 

2. Multivariate red noise 70 

Climate variability is often characterized by a notable separation between the 71 

dominant time scales of interacting processes. For example, compared to much longer 72 

ocean timescales, weather varies so rapidly that it has almost no memory. Weather 73 

forcing of the ocean can then be approximated as white noise forcing of a damped 74 

integrator. This is an example of univariate red noise for an anomaly scalar time series, 75 

the simplest null hypothesis for both atmospheric and oceanic climate. When extended to 76 

the more general case of anomalies representing many evolving regional patterns of 77 

climate variables, this approximation based on time scale separation becomes 78 

multivariate red noise. As opposed to its univariate counterpart, multivariate red noise 79 

represents evolution of both stationary and propagating anomaly patterns (so that scalar 80 

indices derived from it can have spectral peaks) and allows for non-symmetric dynamical 81 

relationships (so that despite the lack of exponential modal instability, some anomalies 82 

experience significant but transient growth and evolution over finite time intervals). 83 
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The empirical technique determining multivariate red noise from observations, 84 

called linear inverse modeling (LIM), provides an excellent approximation of observed 85 

Pacific SST anomaly evolution on time scales ranging from weeks to years. In our prior 86 

study (Newman 2007; hereafter N07), we constructed such an empirical model to 87 

diagnose forecast skill and predictability of tropical and North Pacific SSTs and found 88 

that the empirical model reproduced observed tropical-North Pacific relationships on 89 

decadal time scales better than most CMIP3 coupled GCMs. Subsequent studies have had 90 

similar success in the Atlantic (Hawkins and Sutton 2009, Zanna 2012) and in both ocean 91 

basins (Vimont 2012).  92 

In this paper, the N07 analysis is extended to a state vector constructed from both 93 

Pacific and Atlantic SSTs and global surface land temperatures. The empirical model is 94 

shown to have skill comparable to three CMIP5 decadal hindcast models that used yearly 95 

start dates for the period 1960-2000. The sources of this skill are diagnosed and evaluated 96 

in the context of simpler climate indices.  97 

3. Data and model details 98 

Datasets used in this study were SSTs from the Hadley Sea Ice and Sea Surface 99 

Temperature analysis (HadISST; Rayner et al. 2003) and surface land temperatures from 100 

the University of East Anglia Climatic Research Unit (CRU) TS 3.1 dataset (Mitchell and 101 

Jones 2005), both over the period 1900–2009. Monthly data were interpolated onto 2º 102 

latitude x 5º longitude gridboxes. Data were temporally smoothed with a 12-month 103 

running mean; anomalies were then determined by removing the climatological monthly 104 

mean. This allows an analysis that does not consider seasonality. However, seasonality is 105 

likely still relevant to decadal variability (e.g., Vimont 2005). Data was prefiltered in an 106 
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EOF space that retained about 78% of the SST variance in both the IndoPacific and the 107 

Atlantic basins, and about 62% of the surface land temperature variance. 108 

A multivariate AR1 process for a state vector x can be expressed as 109 

x(t +1) =G1x(t)+σ (t) ,   (1)       (1) 110 

which is the integrated solution of the dynamical system 111 

� 

dx
dt

= Lx + ξ     (2) 112 

forced by white noise ξ , where G1 = exp (L). N07 determined (2) for Pacific SSTs and 113 

we have likewise determined it for global SSTs (not shown). When including surface 114 

land temperatures, however, some time scales in L are too short to be sampled at 1-year 115 

intervals, so in this paper we take the simpler route of using (1), solving for G1 via 116 

multiple linear regression. Note, however, that (2) also implies that the best forecast x̂(n)117 

from initial conditions x(0) for a lead of n years is 118 

x̂(n) = [G1]
nx(0) ,    (3) 119 

and that the lag covariance statistics of x for a lag of n years is  120 

C(n) = [G1]
nC(0)     (4) 121 

where C(n) = x(t + n)x(t)T and C(0) = x(t)x(t)T . This allows us to still make 122 

forecasts using the empirical model and to test its overall validity. 123 

The leading 8/6 EOFs of anomalous IndoPacific/Atlantic SSTs between 60ºS and 124 

60ºN and the leading 6 EOFs of anomalous surface land temperatures were retained for 125 

the model. The time-varying coefficients of these EOFs, i.e., the principal components 126 

(PCs), define a 20-component state vector x. 127 
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Finally, the LIM must be tested on data independent of that used to determine G1. 128 

Estimates of G1 and of forecast skill were cross-validated as follows. We sub-sampled the 129 

data record by removing 10% of the data, calculate G1 from the remaining 90%, and then 130 

generated forecasts for the independent period. This procedure was repeated for all 131 

months. All measures of forecast skill in this study are based upon these jack-knifed 132 

forecasts; note also that forecasts are compared with the complete (that is, untruncated in 133 

EOF space) gridded observations. 134 

Hindcasts from the empirical model are compared to hindcasts from three CMIP5 135 

CGCMs: HadCM3 (DePreSys), MPI-ESM-LR, and GFDL-CM2p1. These models were 136 

chosen since they were the only available models whose hindcasts were initialized yearly 137 

rather than every five years. Skill was determined from the ensemble mean for each 138 

hindcast initialization. 139 

4. Results 140 

Testing the empirical model 141 

We first test the ability of the empirical model to reproduce the lag-covariability statistics 142 

of x. Figure 1 shows the observed lag-autocovariance for n = 2, 4, 6, and 8 years 143 

compared to that predicted by (4). Generally, the match is quite good, and confirms that 144 

the empirical multivariate AR1 model represents the statistics of evolving surface 145 

temperature anomalies over the 20th century quite well. Note that the empirical model has 146 

covariability over land that tends to become too strong, however. Also, while the 147 

empirical model captures the anti-correlation in the tropical eastern Pacific due to ENSO 148 

for a lag of 2 years, it is a little weak. This is likely a consequence of using only SST to 149 
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determine the oceanic portion of the state vector. A LIM that explicitly includes 150 

subsurface physical processes in its state vector will better reproduce the time evolution 151 

of SST anomalies and their statistics, especially for time scales of a year or more 152 

(Newman et al. 2011). Still, the empirical model does implicitly include those subsurface 153 

effects that are linearly related to SST. This is an important distinction from a physical 154 

dynamical model in which the evolution of the state vector is governed only by the 155 

explicitly represented interactions among its components. 156 

Forecast skill of the empirical model and CMIP5 decadal hindcasts 157 

Figure 2 shows forecast skill as measured by local anomaly correlation for forecasts 158 

averaged over leads of 2-5 (left panels) and 6-9 (right panels) years. The top two rows, 159 

comparing skill from the multivariate AR1 model to that obtained from damped 160 

persistence determined locally (i.e., a univariate AR1 model), show that the multivariate 161 

AR1 model sets a much higher benchmark for skill. Additionally, the multivariate AR1 162 

decadal hindcast skill for yearly start dates from 1960-2005 is comparable to and 163 

sometimes better than skill from decadal hindcasts in the CMIP5 archive. Notably, areas 164 

of relatively high and relatively low skill often coincide between both the empirical and 165 

CGCM hindcasts. LIM can thus serve as a benchmark for decadal hindcast skill.  166 

The dependence of skill on forecast lead time for the Atlantic Multidecadal 167 

Oscillation (AMO) and PDO indices is shown in Fig. 3. Here, the AMO index is defined 168 

as the area-weighted average of North Atlantic SST (between 0ºN and 70ºN) and the 169 

PDO index is defined as the projection of SST on the leading EOF of monthly detrended 170 

North Pacific SST anomalies (between 20ºN and 70ºN). AMO skill is generally higher 171 

than PDO skill, which drops off very rapidly for leads greater than a year. N07 had a 172 
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similar result and suggested that it was due to the dependence of the PDO on ENSO, 173 

which itself is predictable for only about a year. The multivariate AR1 model again 174 

provides a more stringent decadal forecast test than does persistence: for the AMO, 175 

differences between GCM and empirical model skill are small and not significant, and for 176 

the PDO the empirical model has higher (albeit modest) skill than all three GCMs for 177 

leads greater than about 5 years.  178 

Actual and expected forecast skill 179 

The geographical variations of forecast skill are generally similar between the empirical 180 

model and the CGCMs. This suggests that, despite the very great differences in model 181 

reconstruction, the sources of forecast skill for CGCMs are largely the same as for the 182 

multivariate AR1 model. 183 

One of the attractive aspects of the multivariate AR1 approach is that its low order 184 

and simplicity makes it a straightforward tool for assessing and diagnosing overall 185 

decadal predictability of surface temperatures. It can be shown that for an infinite 186 

ensemble forecast skill measured by the average anomaly correlation 𝜌!(n) between 187 

forecast and verification anomalies is also a function of S, the forecast signal-to-noise 188 

ratio at lead time n:  189 

𝜌! 𝑛 = 𝑆
[1+ 𝑆!]! !

   (5) 190 

(Sardeshmukh et al. 2000). In (1) and (2) we assume noise is independent of the state; so 191 

on average S is directly related to stronger predictable signal determined from (3) 192 

(Newman et al. 2003a). Therefore, long-range forecasts have highest skill for those states 193 

with relatively large initial amplitude in the least-damped eigenmodes of G1. 194 
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The validity of (5) is investigated in Fig. 4 where the actual hindcast skill from the 195 

entire record (top panels) is compared to the expected skill 𝜌! (middle panels) for years 196 

2-5 and 6-9. In both cases the actual skill, while generally somewhat less than 𝜌!, has a 197 

pattern that is very similar to the expected skill. Certainly, while the multivariate AR1 198 

model may be a good model of variability of x, it is not a perfect one. Also, practical 199 

limitations to the empirical determination of G1 (such as data quality concerns) could be 200 

expected to produce errors both in model formulation and model forecasts. For both these 201 

reasons, treating the LIM as if it were a perfect model underestimates the actual forecast 202 

error. Still, the overall picture suggests that the actual skill is related to variations in 203 

forecast signal strength, as expected. 204 

Almost all of the skill, both actual and expected, is based on the two leading 205 

eigenmodes of G1, shown in Fig. 5 along with the associated projection coefficient time 206 

series. The leading eigenmode is stationary with a very long e-folding time and clearly 207 

represents the global secular trend pattern. The second eigenmode is nominally a 208 

propagating mode, but in reality it can be considered as two distinct quasi-stationary 209 

patterns since the period is very much greater than the 10-year e-folding time. This 210 

eigenmode represents decadal variability, primarily over the Atlantic (most energetic 211 

phase) and over the Pacific (least energetic phase). The latter is very similar to the second 212 

leading eigenmode of the Pacific-only LIM of N07 (dubbed the “Pacific Multidecadal 213 

Fluctuation” or PMF), which represented the residual of the PDO when all ENSO 214 

influences were first removed. When the projections of all hindcasts and data on these 215 

two eigenmodes are removed, the resulting skill map (bottom panels of Fig. 4) shows that 216 

essentially no skill remains. 217 
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Finally, Fig. 6 shows the impact of different initial conditions on the skill of the 218 

PDO in the empirical model. Several new hindcast datasets were created; for every set a 219 

portion of the initial condition of each hindcast was first removed. Note that removing the 220 

leading eigenmode (i.e, the trend) has almost no impact on PDO skill. The greatest 221 

impact occurs when the PMF phase of the second eigenmode is removed; that is, for 222 

forecast leads greater than a year (when ENSO impacts are still important) PDO skill is 223 

primarily due to PMF persistence. 224 

5. Concluding Remarks 225 

A multivariate AR1 model, empirically constructed from annually averaged surface 226 

temperatures using a one-year lag, has been shown to be a more suitable benchmark for 227 

decadal forecasts than is damped persistence. In fact, the empirical model has skill that is 228 

comparable to the CGCMs, both in amplitude and in geographical variation, suggesting 229 

that the much simpler empirical model can also be used to diagnose sources of forecast 230 

skill for both forecast systems.  231 

Virtually all long-range skill from the empirical multivariate AR1 model comes 232 

from the two eigenmodes with the longest e-folding times. The leading eigenmode 233 

represents the global secular trend pattern while the second eigenmode represents decadal 234 

variability. Note that the second eigenmode does not propagate with a multidecadal 235 

period, but instead has a sufficiently long e-folding time that it varies on a multidecadal 236 

timescale. The most notable deficiency in CGCM hindcast skill appears to be related to 237 

this eigenmode over the Pacific. It is interesting that the similar PMF eigenmode found in 238 

the Pacific-only LIM was poorly simulated in all the CMIP3 pre-industrial control and 239 

historical model simulations (N07; Solomon et al. 2011). Whether the global version of 240 
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the eigenmode continues to be poorly represented by the CMIP5 models, and if so, why, 241 

is a subject for further investigation. 242 
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 292 
Fig. 1. Observed (left) and empirical model (right) surface temperature lag-covariance for 293 
lags of (top) 2 years (middle) 4 years and (bottom) six years. Contour interval is 0.05 K2. 294 
  295 
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  296 
     297 
Fig. 2. Local anomaly correlation of (left) years 2-5 and (right) years 6-9 hindcasts for the 298 
CMIP5 models compared to damped persistence and the empirical multivariate AR1 299 
model, for hindcasts initialized yearly from 1960-2000. (a) Damped persistence (b) 300 
empirical multivariate AR1 model (LIM) (c) HadCM3 (d) MPI-ESM-LR (e) GFDL-301 
CM2p1. Contour interval is 0.1 with negative values indicated by blue shading. Shading 302 
of positive values starts at 0.1; redder shading denotes larger values of correlation. 303 

Years	  2-‐5 Years	  6-‐9 
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 304 
 305 
Fig. 3. Skill comparison for the PDO and AMO indices from hindcasts initialized in the 306 
years 1960-2000, calculated as described in the text. (left) AMO (right) PDO 307 
  308 
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 309 

 310 

 311 
 312 
Fig. 4.  Top: LIM skill for the 1900-2008 period for forecast leads of (left) 2-5 years and 313 
(right) 6-9 years. Middle: Same but expected skill. Bottom: LIM skill for the 1900-2008 314 
period but where projection of the initial conditions on the leading eigenmodes (Fig. 5) 315 
are removed. 316 

 317 
  318 
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 319 

 320 
Fig. 5. Leading empirical normal modes, with their associated projection coefficient time 321 
series. Contour interval is the same in all panels. Sign is arbitrary but is consistent with 322 
coefficient time series. Red shading indicates one sign, and blue shading indicates the 323 
other sign. 324 
  325 
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 326 

327 
Fig. 6. LIM skill of the PDO index, for hindcasts where different initial conditions are 328 
used, for the 1900-2008 period. See text for description. 329 
 330 
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